Representation Theory — Exercise Sheet 8	TU Kaiserslautern
JunProf. Dr. Caroline Lassueur	FB Матнематік
Dr. Niamh Farrell	
Due date: Tuesday, 14th of January 2020, 6 p.m.	WS 2019/20

Throughout *G* denotes a finite group and *K* denotes a field of characteristic *p*. All modules considered are assumed to be finitely generated.

For the first three exercises let Q be a p-subgroup of G and let L be a subgroup of G containing $N_G(Q)$.

EXERCISE 33 (Lemma 29.2 (a)).

Suppose that *V* is an indecomposable *KL*-module with vertex *Q* and let *U* be a direct summand of $V \uparrow_L^G$ such that *V* is a direct summand of $U \downarrow_L^G$. Then *Q* is also a vertex of *U*.

Exercise 34 (Lemma 29.2 (b)).

Suppose that *V* is an indecomposable *KL*-module which is *Q*-projective and there exists an indecomposable direct summand *U* of $V \uparrow_L^G$ with vertex *Q*. Then *V* also has vertex *Q*.

Exercise 35.

An indecomposable module is called a **trivial source module** if it has the trivial module as a source. Let *U* be an indecomposable *KG*-module and let *V* be an indecomposable *KL*-module. Let *f* and *g* be the maps defined in the statement of the Green Correspondence. Prove that if *U* and *V* are trivial source modules, then f(U) and g(V) are trivial source modules.

Exercise 36.

Let *A* be a finitely generated algebra over a commutative ring *R*. Let *P* be a projective indecomposable *A*-module. Prove that there exists an idempotent $e \in A$ such that $P \cong Ae$ as *A*-modules.